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1. Answer any four of the following questions: 4x2

(a) State Hahn-Banach theorem.

(b) Show that every normed space can be embedded as a dense subspace of a Banach
space.

(c) Let H be a Hilbert space and {qal}?il be an orthonormal system in H . Show that

|, =@l =2 for m=n.

(d) Let H,, H, be two Hilbert spaces and S:H, > H,; T:H, - H, be two bounded

linear operators. Then show that (ST) =T"S".
(e) Show that if the sequence {xn} in a normed space X is weakly convergentto x, € X ,

then lim inf||x, | =%, -
n—owo

(f) Let T € BL(H) and T > 0 where H is a Hilbert space. Show that ||Tx||? < ||T|| <
(Tx,x) forall H.

2. Answer any four of the following questions: 4x8

(a) (i) Consider the Hilbert space H = L° [—1, 1] equipped with the usual scalar product:
1
(f.g)=[fMo)dt, f,geH.
-1
Let E={xeH: f(-t)=f(t) te[-1 1]} Then

(I) Show that E isclosedin H.Find E*.

(1) Calculate the distance from h to E for h(t)=¢". 5
(ii) Show that the operator P = —i % is self-adjoint on L,(IR). 3
(b) (i) State and prove Banach-Steinhuss theorem. 1+5

(i1) Give an example to show that C [0, 1] equipped with the L - norm
1
[, = [If(x)dx, feclo,1]
0

IS not a Banach space. 2



(c) Let a, b be real numbers such that a < b. Consider the Hilbert space Lz[a, b] over
b

IR and the operator T : L*[a, b] — IR be defined by T f =f f(x)dx, feL’[a,b].

a

(i) Show that T is bounded. Compute|[T|.
(i) According to the Riesz’s theorem, there exists a function g e L*[a, b] such that
Tf=(f,g) for all fel’[ab]. Find such a function g and verify that

o]l =IT]- 4+4

(d) (i) Prove that the set of all bounded linear operators, B(X, Y), is a Banach space if

Y is a Banach space. 4
(if) Show that in any finite dimensional vector space, strong convergence and weak
convergence are equivalent. 4

(e) (i) Show that every infinite dimensional separable Hilbert space H is isometrically

isoporphic to the sequential space |, . 6
(i1) Give an example to show that every closed and bounded linear space may not be
compact. 2
(f) (i) LetS € BL(H), where H is a Hilbert space. Prove that for all x,y € H, 4

3
1
< Sx,y >= ZZ "< S+ i"y), (x+i"y) >.
n=0

(ii) State and prove Riesz-Fischer Theorem. 4



