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1. Answer any four of the following questions:              𝟒 × 𝟐 

(a) State Hahn-Banach theorem.  

(b) Show that every normed space can be embedded as a dense subspace of a Banach 

space. 

(c) Let H  be a Hilbert space and  
1ii  be an orthonormal system in H . Show that 

2 mn  for nm  . 

(d) Let 21, HH  be two Hilbert spaces and 2121 :;: HHTHHS   be two bounded 

linear operators. Then show that   ***
STST  . 

(e) Show that if the sequence  nx  in a normed space X  is weakly convergent to Xx 0 , 

then .inflim 0xxn
n


  

 

(f) Let 𝑇 ∈ 𝐵𝐿(𝐻)  and 𝑇 ≥ 0  where 𝐻  is a Hilbert space. Show that ‖𝑇𝑥‖2 ≤ ‖𝑇‖ ≤
 〈𝑇𝑥, 𝑥〉 for all 𝐻.  

2. Answer any four of the following questions:              𝟒 × 𝟖 

(a) (i) Consider the Hilbert space  1,12  LH  equipped with the usual scalar product: 

    .,,,

1

1

Hgfdttgtfgf  


 

Let       .1,1,:  ttftfHxE  Then  

(I) Show that E  is closed in H . Find E . 

(II) Calculate the distance from h  to E  for   teth  .         5 

(ii) Show that the operator 
dx

d
iP   is self-adjoint on  IR2L .        3 

(b) (i) State and prove Banach-Steinhuss theorem.                1+ 5 

(ii) Give an example to show that  1,0C  equipped with the 1L  - norm 

   1,0,

1

0

1
Cfdxxff    

is not a Banach space.             2 



 

 

(c) Let ba,  be real numbers such that ba  . Consider the Hilbert space  baL ,2  over 

IR  and the operator   IR2 ba,L:T  be defined by    .,, 2

 

b

a

baLfdxxffT  

(i) Show that T  is bounded. Compute T . 

(ii) According to the Riesz’s theorem, there exists a function  ba,Lg 2  such that 

gffT ,  for all  ba,Lf 2 . Find such a function g  and verify that 

Tg
L
2 .                   4 + 4 

(d) (i) Prove that the set of all bounded linear operators,  YXB , , is a Banach space if 

Y  is a Banach space.            4 

(ii) Show that in any finite dimensional vector space, strong convergence and weak 

convergence are equivalent.            4 

(e) (i) Show that every infinite dimensional separable Hilbert space H  is isometrically 

isoporphic to the sequential space 2l .           6 

(ii) Give an example to show that every closed and bounded linear space may not be 

compact.               2 

(f) (i) Let 𝑆 ∈ 𝐵𝐿(𝐻), where 𝐻 is a Hilbert space. Prove that for all 𝑥, 𝑦 ∈ 𝐻,      4 

< 𝑆𝑥, 𝑦 >=
1

4
∑ 𝑖𝑛 < 𝑆(𝑥 + 𝑖𝑛𝑦), (𝑥 + 𝑖𝑛𝑦) >

3

𝑛=0

 . 

(ii) State and prove Riesz-Fischer Theorem.         4 


