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1. Answer any four of the following questions:                                 2 × 4  

(a) Consider the function 𝑓(𝑥) =
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Show that 𝑓(𝑥) is a cubic spline.             

(b) The matrix [
2 1
4 −1

]  is decomposed into a product of lower triangular matrix 𝐿 and upper   

      triangular matrix 𝑈. Find properly decomposed 𝐿 and 𝑈 matrices respectively.                                 

(c) Obtain the first three orthogonal polynomial 𝑓𝑛(𝑥) on [ -1, -1] from linear independent       

functions 1, 𝑥, 𝑥2   with weight function 𝑤(𝑥)  =  1.  

(d) Define ill-conditioned matrix. Use condition number to show that the matrix 

        𝐴 = [
1 3

0.33 1
]   is ill-conditioned. 

(e) Find the weights 1 2 3, ,w w w  so that the relation  

     
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( ) 0.6 0 0.6f x dx w f w f w f


     

is exact for the functions 
2( ) 1, ,f x x x . 

(f) Define predictor and corrector formula in a multi-step method to solve a differential 

equation. Which formula gives better approximate value and why.                     

2. Answer any four of the following questions:                                8 × 4 

(a) Using Jacobi’s method find all the eigen values and corresponding eigen vectors of the  
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(b) The differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2 − 2 satisfies the following data: 

𝑥 -0.1 0.0 0.1 0.2 

𝑦 1.09 1.00 0.89 0.76 

       Use Milne’s predictor-corrector formula to obtain the value of 𝑦(0.3).       8 

  (c) (i) Using Lagrange’s bivariate interpolation method, find the value of 𝑓(2, 2) from the   

       following data,   𝑓(0, 0) = 1, 𝑓(1, 0) = 2, 𝑓(3, 0) = 4,  

𝑓(0, 1) =  3 , 𝑓(1, 1) = 5, 𝑓(3, 1) = 15.                      

      (ii) Write down the expressions of zeros of Chebyshev polynomial of degree 𝑛.          6 + 2       

                                                                                                                                                                                                                                                                     

(d) (i) Derive the value of ( )
b

a
f x dx  using Gauss-Chebyshev quadrature formula.                    4 

 

     (ii) Solve the tri-diagonal system of equation   

𝑥 +  𝑦 =  3, −𝑥 + 2𝑦 + 𝑧 =  6,   3𝑦 +  2𝑧 =  12         4 

(e) Describe the Crank-Nicolson implicit method to solve the following equation: 
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       Subject to the boundary conditions 1 2(0, ) ( ), (1, ) ( )u t f t u t f t  and initial condition 

   ,0u x g x .                                                                                 8 

(f) (i) Find the first approximate values at the interior mesh points of the following Dirichlet’s   

      problem:     𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0.   Given that  𝑢(𝑥, 0) = 0, 𝑢(0, 𝑦) = 0,  𝑢(𝑥, 1) = 10𝑥,  

  𝑢(1, 𝑦) = 10𝑦. 

      (The region 𝑥 ≥ 0, 𝑦 ≤ 1 be divided into 4 × 4 squares of sides ℎ = 0.25).       4 

      (ii) Solve Poison’s equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 8𝑥2𝑦2 for the square grid as shown below:      4 
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