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1. Answer any four of the following questions: 2 x4
(a) Determine the closure of the A = {% Xy;0<y< 1}.

(b) Is the space R; second countable? Justify your answer.
(c) Consider the following subset of the real line Y = [0, 1] U (2, 3) in the subspace topology.
Examine whether the subsets [0, 1] and (2, 3) are open or closed in Y.

(d) Define subspace topology. Show that if Y be a subspace of X, U is openinY and Y is
open in X then U is open in X.

(e) Let X be a topological space such that for each pair of disjoint closed sets A and B in X,
there is a real-valued continuous function f on X satisfying f(x) = 0,V x € A and
f(x) =1,V x € B. Show that X is normal.

(f) What is a net in a topological space? Prove that in a topological space X, a subset A of X is
closed if and only if no net in A converges to a point of X — A.

2. Answer any four of the following questions: 8x4
(@) (i) Define basis of a topological space. Let X be a set and B be a basis for a topology T on

X. Then show that T is equal to the collections of all unions of elements of B.
(i) Is a normal topological space always regular? Justify your answer.
(iii) Let f,,: X = Y be a sequence of continuous function from the topological space X to
the metric space Y. If {f,,} converges uniformly to f, then show that f is continuous.
3+2+3

(b) (i) Define Frechet compact or B-W compact topological space.



(ii) Give an example of a second countable B-W compact topological space which is not
countably compact. Explain the reason.

(iii) Prove that a topological space is compact if and only if each family of closed sets in it
with finite intersection property has a non-empty intersection. 1+3+4

(c) (1) Show that the image of a locally connected topological space under a continuous
mapping may not be locally connected.
(ii) Let X be a subspace of the Euclidean space R? defined by X = {(0,0)} U B, where

B ={(xy);0<x<1landy = sin=}. Prove that X is connected but not locally

connected topological space. 3+5

(d) (i) Prove that a subset of R is connected if and only if it is an interval.

(i1) Show that every second countable topological space is Lindeloff. 5+3

(e) (i) Define totally disconnected topological space. Let (X, T) be a compact Hausdorff
topological space which is totally disconnected. Show that it has an open base whose
sets are closed.
(ii) Is the topological space [0,1]™ < R™ compact with respect to usual topology? Justify
your answer. 4+4

(f) (i) Define Cartesian product of two topological spaces and its basis.
(if) Show that in a Hausdorff topological space, each net converges to at most one point.
(iii) Let (X, T) be a topological space and A be a subset of X. Then show that a point s is

an accumulation point if and only if there exists a net in A — {s} which converges to s.

2+3+3



