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1. Answer any four of the following questions:       2 × 4 

(a) Define equicontinuity with an example. 

(b) Give an example of a function  which is not continuous on a closed interval but  is 

a function of bounded variation on that interval.  

(c) Let  be a measurable space and  be a measurable function, where  

 .   

Is  a measurable set in X?    

(d) Show that  , where   is uniformly convergent on . 

(e) Evaluate . 

(f) Define Borel set with example.  

2. Answer any four of the following questions:        8 × 4 

(a) (i) Let  be a function of bonded variation on  and let  be its 

corresponding variation function. Then show that  is continuous at a point  

if and only if  is continuous at . 

(ii) Check whether the function  on  is a function of 

bounded variation or not. If so, also find the variation function of on .    4 + 4 

(b) (i) Let  be a sequence of equicontinuous, real valued, uniformly bounded 

continuous functions on . Show that  has a convergent subsequence which 

converges uniformly on any bounded subset of . 

(ii) Show that Cantor set is an uncountable set.        4 + 4 

(c)  (i) If f  is measurable, then show that for every extended real number  , the set 

( ) ( )  === xfExfE :  is measurable.                    



 

 

(ii) Let m  be a measure on a   – algebra of subsets of X  . Show that the outer 

measure *  induced by   is countably subadditive.       4 + 4 

(d) (i) Let  be measurable for  Then show that  is a 

measurable function on . 

(ii) Construct a non-measurable subset of IR .       4 + 4 

(e) (i) Let  be a continuous and strictly monotone function on . If  is a 

continuous function on , then show that , 

where . 

(ii) Let  be defined by ,  and  

 , when  is rational 

           , when  where  are integers prime to each other and   

Prove that  is a function of bounded variation on .      4 + 4 

(f) (i) Prove that if   IR,: →baf  is continuous, then f  is measurable. Is the converse 

true? Justify your answer.              

(ii) Suppose  is a compact subset of  and the sequence of functions  is 

continuous on . If each  is pointwise bounded and equicontinuous on , then 

show that  is uniformly bounded on .         5 + 3 

 

 

 

 


