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1. Answer any four of the following questions: 2x4

(a) Define equicontinuity with an example.
(b) Give an example of a function f which is not continuous on a closed interval but f is
a function of bounded variation on that interval.

(c) Let X be a measurable space and yz: X — R be a measurable function, where
() = {1 if xEE
XEV) = 0ifx € E

Is E a measurable set in X?

3..2
(d) Show that {f,,}, where f,,(x) = logtlnw is uniformly convergent on [0, 1].

2
(e) Evaluate ff (x — [x]) dx?.
(f) Define Borel set with example.

2. Answer any four of the following questions: 8§ x4

(a) (i) Let f:[a,b] = R be a function of bonded variation on [a, b] and let V be its
corresponding variation function. Then show that f is continuous at a point ¢ € [a, b]
if and only if V is continuous at c.
(i1) Check whether the function f(x) = |5x — 7| + |x| on [0, 3] is a function of
bounded variation or not. If so, also find the variation function of fon [0,3]. 4 +4

(b) (i) Let {f,} be a sequence of equicontinuous, real valued, uniformly bounded
continuous functions on R. Show that {f;} has a convergent subsequence which
converges uniformly on any bounded subset of R.

(i1) Show that Cantor set is an uncountable set. 4+4

(c) (i) If f is measurable, then show that for every extended real number «, the set
E(f=a)={xe E: f(x)=a} is measurable.



(1) Let m be a measure on a o — algebra of subsets of X . Show that the outer
measure 4 induced by u is countably subadditive. 4+4

(d) (1) Let f,;: X = R" be measurable for n = 1,2, 3, ... Then show that lim inf,, ., f,, is a

measurable function on X.

(i1) Construct a non-measurable subset of IR. 4+4

(e) (i) Let ¢ be a continuous and strictly monotone function on [a,B]. If f is a

®

continuous function on [a, b], then show that f; fx)dx = ff fF(eO))d(o()),
where a = ¢(a), b = p(B).
(ii) Let f:[0,1] = R be defined by £(0) = 0, (1) = 1 and

f(x) = 0, when x is rational

= é , when x = % where p, q are integers prime to each other and g > p.
Prove that f is a function of bounded variation on [0, 1]. 4+4
(i) Prove that if f:[a,b]—IR is continuous, then f is measurable. Is the converse
true? Justify your answer.

(i1) Suppose K is a compact subset of R and the sequence of functions f,(x) is
continuous on K. If each f,, is pointwise bounded and equicontinuous on K, then
show that f,, is uniformly bounded on K. 5+3



