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1. Answer any four of the following questions:                𝟐 × 𝟒 

(a) Explain the concept of Green’s function for the non-homogeneous equation 

  ( )xfxLu = , where L  is Sturm-Liouville operator, subject to some boundary 

conditions at the end points of the interval bxa  .  

(b) Find the general solution of the system of equation: yxyyxx 32;43 +−=+−=  .  

(c) Let  ( )zPn  is the Legendre polynomials of degree n , then expand ( ) 12 += zzf  in 

terms of ( ) zPc rr .  

(d) Explain, with an example, the Fuchsian type differential equation. 

(e) Examine that whether infinity is a regular singular point for Bessel’s differential 

equation or not. 

(f) When a boundary problem is a Sturm-Liouville problem. 

2. Answer any four of the following questions:      𝟖 × 𝟒 

(a) Determine a fundamental matrix for the linear vector differential equation  

( )Txxxxx
dt
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 and find its general solution. Also determine 

the unique solution 


 that satisfies the initial condition ( ) ( )T4010 =


 .    5 + 1 + 2 

(b) (i) Find the series solution of the differential equation ( ) 012

2

2
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dz
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z
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powers of z .                               

(ii) Show that for the Legendre polynomials of degree n , ( )zPn , ( ) ( ) ( )zPzP n

n

n 1−=−  

                        6 + 2   

(c) (i) Construct the Green’s function for the boundary value problem 



 

 

( ) ( ) ( ) ( ) 010with,1
1

===− yyxy
x

xy . 

And hence solve the equation. 

(ii) Write down the conditions for the existence and uniqueness of solutions to a 

system of n  linear 1st order ordinary differential equations?                6 + 2 

(d) (i) Find the characteristic values and the characteristic functions of the Sturm-

Liouville system ( ) ( ) 0,01;0 2 ===+

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d
where we assume that  is a 

non-negative parameter.  

(ii) For the Bessel function of the first kind of order n , ( )zJ n , show that 

( ) 1+

−− −= n

n

n

n JzJz
dz

d
.               5 + 3 

(e) (i) If α and β are the roots of the equation Jn(z)=0 then show that  

 

(ii) If then prove that           6 + 2 

(f)  (i) Find the general solution of the non-homogeneous system,                       

               +   where . 

(ii) Prove that,          6 + 2 

 

 

 

 

 

 

 

 

 

 

 

 


