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answers as far as practicable. Notations used here have their usual meaning.

1. Answer any four of the following questions: 2X4

(a) Explain the concept of Green’s function for the non-homogeneous equation
Lulx]=f(x), where L is Sturm-Liouville operator, subject to some boundary

conditions at the end points of the interval a < x<b.
(b) Find the general solution of the system of equation: x=-3x+4y; y=-2x+3y.

(c) Let P,(z) is the Legendre polynomials of degree n  then expand f(z)=z+1 in
terms of » ¢, P.(z)

(d) Explain, with an example, the Fuchsian type differential equation.

(e) Examine that whether infinity is a regular singular point for Bessel’s differential
equation or not.

(f) When a boundary problem is a Sturm-Liouville problem.

2. Answer any four of the following questions: 8x4

(a) Determine a fundamental matrix for the linear vector differential equation

5 2 =2
% =|7 0 -2|%, ¥=(x, x, x;) and find its general solution. Also determine

11 1 -3
the unique solution ¢ that satisfies the initial condition ¢ (ﬁ)z (1 0 4. 541+2
: CZW (z —l)w 0 in

powers of z.

(ii) Show that for the Legendre polynomials of degree n P,(z), P,(-z)=(~1)'P,(z)
6+2

(c) (1) Construct the Green’s function for the boundary value problem



()= (W) =1, with 5(0)=5(1)=0.

And hence solve the equation.
(i1) Write down the conditions for the existence and uniqueness of solutions to a
system of n linear 1% order ordinary differential equations? 6+2

(d) (1) Find the characteristic values and the characteristic functions of the Sturm-
Liouville system di{x %} 2 y=0; y(1)=0, y'(ez”): Owhere we assume that 1is a
X X X

non-negative parameter.
(i) For the Bessel function of the first kind of order n, J,(z), show that

d

Lzra)==z"T,,. 5+3
dz
(e) (1) If o and B are the roots of the equation J,(z)=0 then show that
0, ifa+pf
1
.I{] zJp(az) J,(Bz)dz = {% (B ifa=p
(1) If z =1, then prove that B,(z) < P,4,(2). 6+2

(f) (1) Find the general solution of the non-homogeneous system,

ax 7 -1 6 —5t—6 X1
Py (—10 4 —12) X+ (—4?: + 23 | where X = (xz .
-2 1 -1 2 X3
(11) Prove that, B,(z) = P_,_,(2). 6+2



