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1. Answer any four of the following questions:                                 4 × 2 

(a) Find all abelian group of order 81. 

(b) Is the group 𝑆4 solvable? Justify your answer.  

(c) If 𝐹 is a finite field of characteristic 𝑝 and (𝐹: ℤ𝑝) = 𝑛. Show that 𝐹 contains 𝑝𝑛 

elements. 

(d) Is a primary ideal always a prime ideal? Justify your answer. 

(e) Prove that every finite field is perfect. 

(f) Define degree of field extension. Find (ℚ(√3, √5): ℚ).  

2. Answer any four of the following questions:                          8 × 4 

(a) (i) Prove that every finite 𝑝-group is nilpotent.  

      (ii) Define separable extension with example. Let 𝐾 be a field of characteristic 𝑝 (>
0). Show that an irreducible polynomial 𝑓(𝑥) ∈ 𝐾[𝑥] is inseparable if and only if 

𝑓(𝑥) = 𝑔(𝑥𝑝) for some 𝑔(𝑥𝑝) ∈ 𝐾[𝑥𝑝].                                                                  4 + 4                                                                                 

 

(b) (i) State and prove fundamental theorem of field extension. 

      (ii) Find the splitting field 𝑆 of 𝑥2 + 𝑥 + [1] over ℤ5. Find (𝑆: ℤ5) and a basis for 
𝑆

ℤ5
⁄ .                                                                                                                         6 + 2      

 (c) (i) Show that every subgroup of a solvable group is solvable. 

      (ii) Let 𝐹 𝐾⁄  be a field extension and 𝛼 ∈ 𝐹 be algebraic over 𝐾. Let 𝑓(𝑥) be       the 

minimal polynomial of 𝛼 over 𝐾. Then 𝑓(𝑥) is the monic polynomial of smallest degree 

in 𝐾[𝑥] having 𝛼 as a root. 

     (iii) Construct a Galois field with 9 elements.                                               4 + 2 + 2 

(d) (i) State and prove first Sylow theorem.  



                                                                                                                                                                                                           

 

     (ii) Let 𝐺 be a finite group and 𝐻 be a subgroup of 𝐺 of index 𝑛 such that |𝐺|  does 

not divide 𝑛! . Show that 𝐺 contains a non-trivial normal subgroup.                       5 + 3                                                                                                       

(e) (i) Let 𝐾 be a field and 𝑛 be a positive integer such that 𝑐ℎ𝐾 ∤ 𝑛. Let 𝐺 be the set of 

all 𝑛𝑡ℎ roots of unity in 𝐾. Then show that 𝐺 is a multiplicative cyclic group and |𝐺| 
divides 𝑛. Also, show that if 𝑥𝑛 − 1 splits into linear factor in 𝐾[𝑥] then |𝐺| = 𝑛. 

     (ii) Define Galois extension. Find the Galois group of the polynomial  𝑥4 − 5 ∈
ℚ[𝑥].                                                                                                                          4 + 4     

 (f) (i) Let 𝐺 be a group of all 𝑛 × 𝑛 real matrices which are invertible where 𝑛 ≥ 3. 

Show that 𝐺 is not solvable.  

      (ii) In the field extension ℝ ℚ⁄ , show that 𝜋2 is transcendental over ℚ. 

      (iii) Let 𝐹 𝐿⁄  and 𝐿 𝐾⁄  be two field extensions such that (𝐹: 𝐿) = 𝑚 and (𝐿: 𝐾) = 𝑛. 

Prove that (𝐹: 𝐾) = 𝑚𝑛.                                                                                    2 + 2 + 4 

  

                                                            

 

 

 

 

 

 

 

 

  


