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1. Answer any four of the following questions: 4 x2
(a) Find all abelian group of order 81.
(b) Is the group S, solvable? Justify your answer.

(c) If F is a finite field of characteristic p and (F : Zp) = n. Show that F contains p™
elements.

(d) Is a primary ideal always a prime ideal? Justify your answer.

(e) Prove that every finite field is perfect.
(f) Define degree of field extension. Find (Q(\/i \/g) Q).

2. Answer any four of the following questions: 8§ x4

(a) (1) Prove that every finite p-group is nilpotent.

(i1) Define separable extension with example. Let K be a field of characteristic p (>
0). Show that an irreducible polynomial f(x) € K[x] is inseparable if and only if
f(x) = g(xP) for some g(xP) € K[xP]. 4+4

(b) (1) State and prove fundamental theorem of field extension.

(ii) Find the splitting field S of x? + x + [1] over Zs. Find (S:Zs) and a basis for
s /74 6+2

(c) (1) Show that every subgroup of a solvable group is solvable.
(i1) Let F / i be a field extension and a € F be algebraic over K. Let f(x) be  the

minimal polynomial of & over K. Then f (x) is the monic polynomial of smallest degree
in K[x] having a as a root.
(ii1) Construct a Galois field with 9 elements. 4+2+2

(d) (1) State and prove first Sylow theorem.



(i1) Let G be a finite group and H be a subgroup of G of index n such that |G| does
not divide n! . Show that G contains a non-trivial normal subgroup. 5+3

(e) (1) Let K be a field and n be a positive integer such that chK t n. Let G be the set of
all n*" roots of unity in K. Then show that G is a multiplicative cyclic group and |G|
divides n. Also, show that if x™ — 1 splits into linear factor in K[x] then |G| = n.

(ii) Define Galois extension. Find the Galois group of the polynomial x*—5 €
Q[x]. 4+4

(f) (1) Let G be a group of all n X n real matrices which are invertible where n > 3.
Show that G is not solvable.

(1) In the field extension R/Q, show that 72 is transcendental over Q.

(iii) Let F / 1 and L/ k be two field extensions such that (F:L) =mand (L: K) = n.
Prove that (F: K) = mn. 2+2+4



