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1.     Answer any four of the following questions:                                    𝟒 × 𝟐 

a) Define Dirac-delta function. Find the Fourier transformation of the Dirac-delta 

function. 

b) If 𝐿(𝑢) = 𝐴𝑢𝑥𝑥 + 𝐵𝑢𝑥𝑦 + 𝐶𝑢𝑦𝑦 + 𝐷𝑢𝑦 + 𝐸𝑢𝑦 + 𝐹𝑢, then find its adjoint operator 

𝐿∗, where 𝐴, 𝐵, 𝐶 , 𝐷, 𝐸 and 𝐹 are functions of 𝑥 and 𝑦. 

c) Solve:  (𝐷3 − 6𝐷2𝐷′ + 11𝐷𝐷′2
− 6𝐷′3

)𝑧 = 𝑒5𝑥+6𝑦. 

d) Define well-posed mathematical problem with example. Also give an example of 

an ill-posed problem.         

e) Describe ‘Spherical mean’ of a harmonic function. 

f) Construct a PDE from the equation 𝑢 = 𝑎𝑒−𝑏2𝑡 cos 𝑏𝑥, where a and b are arbitrary 

parameters. 

2.     Answer any four of the following questions:                                    𝟖 × 𝟒 

a) (i) Using 𝐷’Alembert’s formula, solve the wave equation 

                               𝑢𝑡𝑡 − 𝑢𝑥𝑥 = 1,     −∞ < 𝑥 < ∞, 𝑡 > 0 

    Subject to            𝑢(𝑥, 0) = 𝑥2,      −∞ < 𝑥 < ∞ 

                                 𝑢𝑡(𝑥, 0) = 1,      −∞ < 𝑥 < ∞.                

 

      (ii) Solve the PDE: (𝑥2𝐷2 − 2𝑥𝑦𝐷𝐷′ + 𝑦2𝐷′2
− 𝑥𝐷 + 3𝑦𝐷′)𝑧 = 8

𝑦

𝑥
 .                4 + 4          

b) Classify and reduce the PDE 𝑢𝑥𝑥 − 2 sin 𝑥 𝑢𝑥𝑦 − 𝑐𝑜𝑠2𝑥𝑢𝑥𝑦 − cos 𝑥 𝑢𝑦 = 0  to a 

canonical form and hence solve it.                           8 

c) (i) Find the equation of the integral surface of the linear PDE (𝑥 − 𝑦)𝑝 +
(𝑦 − 𝑧 − 𝑥)𝑞 = 𝑧 which contains the circle  𝑥2 + 𝑦2 = 1, 𝑧 = 1. 

(ii) Find the complete integral of 𝑝𝑥𝑦 + 𝑝𝑞 + 𝑞𝑦 = 𝑦𝑧.                                        4 + 4 

 



 

 

d) (i) A string of length L is released from rest in the position 𝑦 = 𝑓(𝑥). Show that the 

total energy of the string is  

𝜋2𝑇

4𝐿
∑ 𝑛2𝑘𝑛

2

∞

𝑛=1

 

where 𝑘𝑛 =
2

𝐿
∫ 𝑓(𝑥) sin (

𝑛𝜋𝑥

𝐿
) 𝑑𝑥

𝐿

0
 and T is the tension of the string. 

      (ii) Prove that if the Neumann problem for a bounded region has a solution, then it is 

either unique or it differs one another by a constant.                                                    5 + 3        

e) (i) Obtain the solution of the one-dimensional diffusion equation 𝑢𝑡 = 𝑘𝑢𝑥𝑥 , 

satisfying the following conditions: (𝑖) 𝑇 is bounded as 𝑡 → ∞, (ii) 𝑇(0, 𝑡) = 𝑇(𝜋, 𝑡),

𝑡 ≥ 0 (iii) 𝑇(𝑥, 0) = 𝑓(𝑥) = 𝑥,            0 ≤ 𝑥 ≤
𝜋

2
 

                                                 = 𝜋 − 𝑥, 𝜋
2⁄ ≤ 𝑥 ≤ 𝜋. 

     (ii) Consider the Cauchy problem for Laplace equation 𝑢𝑥𝑥 + 𝑢𝑦𝑦 = 0 , subject to  

𝑢(𝑥, 0) = 0, 𝑢𝑦(𝑥, 0) =
1

𝑛
sin 𝑛𝑥, where 𝑛 is a positive   integer. Show that the solution is  

𝑢(𝑥, 𝑦) =
1

𝑛2
sin 𝑛𝑥 sinh 𝑛𝑦.                              4 + 4 

f) Obtain the Poisson’s integral formula of an interior Dirichlet problem for a circle.     8  

 

 

 

                                                                                                                            


